

DCM6-650/ DCM6-200

DC DIN rail mounted meter for EV charging stations

USER MANUAL

2025 V1.6

Content

Version History			
1. Pro	perties	4	
1	.1 Introduction	4	
1	.2 Specifications	5	
1	.3 Technical Standard	. 6	
1	.4 Additional Documents and Tools	7	
2. Safe	ety	7	
2	.1 Responsibility	7	
2	.2 Common safety instructions	7	
2	.3 Disposal (product end of life information)	7	
2	.4 Environment	7	
2	.5 Service and warranty	8	
3. Тур	e Code	. 8	
4. Asse	embling and Installation	8	
4	.1 Housing	9	
4	.2 Installation and Safety	10	
5. Mar	rking	12	
6. Disp	blay	14	
6	.1 Internal Display State Machine	14	
6	.2 Display Description	15	
	6.2.1 General State	15	
	6.2.2 State Transition Conditions	15	
	6.2.3 After Start-up Screen	15	
	6.2.4 Available Button Actions	16	
	6.2.5 Display Charging State	17	
6	.3 Display screen image	17	
	6.3.1 Display Charging Summary State	17	
	6.3.2 Normal display	17	
	6.3.3 Charging display	17	
	6.3.4 Historical data display	18	
	6.3.5 Public Key display	19	
	6.3.6 Symbols	19	
7. USE	R BUTTONS	20	
8. Con	nmunication	21	
8	.1 RS485 Interfaces	21	
8	.2 Modbus Protocol	21	
	Input register	23	
	Holding Registers	25	
	OCMF Holding Registers	31	
	Appendix 1	33	
8	.3 Private / Public key read	33	
8	.4 OCMF Dataset	33	

9. System Architecture	35
9.1 System Overview	35
9.2 Measurement 3	35
9.3 Application3	35
9.4 LCD	35
10. Functional Description	36
10.1 About Line Loss	36
11. EASTRON EV-METER DC TEST3	38
11.1 Introduction:3	38
11.2 Preparation:	38
11.3 Operating environment:	38
11.4 Operation	39
11.4.1 Communication connection3	39
11.4.2 Parameter Settings 4	10
11.4.3 Measurement 4	12
11.4.4 Charge	12
11.5 History4	14

Version History

Version	Date	Changes
1.0	2023-11-1	Initial
1.1	2024-6-20	Add DCM6-200 technical data
		Add MID and Eichrecht approval info
		Firmware version updated to V01.03
1.2	2024-8-7	Add a drawing of DCM6-200
1.3	2024-8-30	1. Added modbus format description
		2. Added the description about log storage
1.4	2024-10-14	1.Added line loss display description
1.5	2025-01-21	Added content of 4-wire line loss mode
1.6	2025-02-28	Add Fault code in protocol

1. Properties

1.1 Introduction

The DCM6-650/DCM6-200 is a DC meter for direct installation in EV charging stations. It provides the measurement data records with timestamp, loading process data and digital signature, thereby enabling charging processes to be billed in accordance with the legal requirements. Furthermore, all charging processes are persistently stored in the internal data storage of the meter.

According to Figure 1 the DCM6-650/-200 acquires meter data, stores meter data and acts as meter data signer as part of the "Messkapsel". The connection between the main controller of the charging station and the DCM6-650/-200 is realized by a RS485 interface. All signed, OCMF-formatted datasets have to be forwarded unchanged by the station controller. Thereby signature and datasets are always transmitted together. The user authentication process should be performed according to the OCMF specification subsection 4.3.4 . After completing a charging session, the user has access to all session related data sets by the communication interfaces. By means of a transparency software application the signed data sets can be verified for billing purposes. All start and stop values of each individual charging session are persistently stored within the internal flash storage of the meter. All data sets obtained by the meter, contain a second index and a timestamp set by the charging station controller. The mentioned timestamp is a so called "Info-Uhr". This excludes a time-based tariffing. Charge process data sets are visualized after the charging process on the display of the meter.

Through a transparency software application, the customer can check each charging processes invoiced individually. Furthermore, such an application visualizes the datasets of the charging processes during a billing period and shows the status of the signature verification and the amount of energy consumed.

1.2 Specifications

Type Voltage	DCM6-650	DCM6-200
Umax	1000 V	
Umin	150 V	
Current		
Starting current Ist	0.52 A (DCM6-650)	0.08A (DCM6-200)
Minimum current Imin	6.5 A (DCM6-650)	1A (DCM6-200)
Current Itr	13 A (DCM6-650)	4A (DCM6-200)
Normal current IRef	130 A (DCM6-650)	40A (DCM6-200)
Maximum current Imax	650 A (DCM6-650)	200A (DCM6-200)
Accuracy		
Class	Class B	
Measuring Active Energy		
Energy Direction	+A with -A	
Energy Register		
Total Mains Energy	+A / -A / total	
Total Device Energy		
Meter constant		
LED-Output 10	000 Imp/kWh, Total Mains Energ	ξγ
Display		
LCD	Dot Matrix Display with 7+4 digits	
Life cycle	> 12 years	
RS485- Data Interface 1 and 2		
Connector Port 1: terminal 7 and 8, Port 2: RJ12		2: RJ12
Parameter 4800~115200 bps (19200bps default), 8N1 (settable		lefault), 8N1 (settable)
RS485- Data Interface 3		
Connector	RJ12 port	
Parameter	4800~115200 bps (19200bps d	lefault), 8N1 (settable)
Power Consumption		
Voltage circuit	< 0.5 W at Un	
Current circuit < 0.12 W at Imax		
Auxiliary power supply	Auxiliary power supply < 2 W	
Modbus communitcations		
Communication Address	Communication Address 1-247	
Transmission distance	Transmission distance 1000m Maximum	
Parity None(default),Odd,Evan		
Stop bits	1 or 2	

Temperature Range		
Typical Operation	-4	0°C to +80°C
Storage	-4	0°C to +85°C
Humidity		
max.98	%, not cor	densing EN60068-2-30:1999
Environmental conditions		
Mechanical environmental conditions		M1
Electromagnetic environmental conditions		E2
Housing		
Dimension	DIN-Rail	115 mm(L) x 103mm(W) x 64 mm(H)
Material		Polycarbonate UL94-V0
Storage		
Capacity for Start- and Stop-Charge Records > 225000		
Capacity of Logbook	> 3000	

Table 1: Electrical and mechanical specifications.

1.3 Technical Standard

[1] EN50470- 4:2023 "Electricity metering equipment (d.c.) – Part 4: Particular requirements – Static meters for DC active energy (class indexes A, B and C)"

[2] IEC62053-41:2021 "Electricity metering equipment (d.c.) - Particular requirements - Part 41: Static meters for DC energy (classes 0,5 and 1)"

[3] IEC62052-11:2020 "Electricity metering equipment (d.c.) - General requirements, tests and test conditions - Part 11: Metering equipment"

[4] EN-IEC 62052-11/A11:2022 "Electricity metering equipment (d.c.) – Part 11: general requirements, tests and test conditions – Metering equipment"

[5] VDE-AR-E 2418-3- 100: "Elektromobilität – Messsysteme für Versorgungseinrichtungen

[6] PTB-A 20.1: "Messgeräte fürElektrizität: Elektrizitätszähler und deren Zusatzeinrichtungen"

[7] PTB-A 50.7: "Anforderungen an elektronische und softwaregesteuerte Messgeräte und Zusatzeinrichtungen fürElektrizität, Gas, Wasser und Wärme"

[8] OCMF1.2.0: "Open Charge Metering Format"

1.4 Additional Documents and Tools

[9] Transparenzsoftware of the S.A.F.E Initiative, Version 1.3.0 https://safe-ev.org/files/software/transparenzsoftware-1.3.0.jar

[10] EASTRON EV-METER DC TEST https://www.eastrongroup.com/software/eastronev-meterdctest

2. Safety

2.1 Responsibility

The owner or provider is the person responsible for the proper use of the device. The installation, putting into operation and re-installation of the meter is only allowed to be done by qualified persons, which got knowledge about this manual.

2.2 Common safety instructions

For installation, setting, operation and uninstallation of the device the local requirements for safety requirements have to be observed.

Danger

Inappropriate use of parts under high voltage may lead to serious injuries and accidents, which may be fatal.

The conductors which are connected to the device have to be disconnected to the mains during assembling and installation. It also has to be used a prevention for being switched on accidentally. The device is not allowed to be used out of specifications.

2.3 Disposal (product end of life information)

This meter was designed and built by EASTRON to provide many years of service and is backed by our commitment to provide high quality support. When it eventually reaches the end of its serviceable life, it should be disposed of in accordance with local or national legislation.

2.4 Environment

This meter is designed for indoor use or in a cabinet environment only (avoiding extreme weather conditions) in accordance with IEC 62052- 11 and IEC 62053-41, with the terminal cover fitted.

2.5 Service and warranty

This meter product is warranted against defects in material and workmanship for a period of one year from date of shipment. During the warranty period EASTRON will at its option, either repair or replace products which prove to be defective. For warranty service or repair, this product has to be returned to a service facility designated by EASTRON. EASTRON does not warrant that the operation of the meter or firmware will be uninterrupted or error free. Damaged devices cannot be repaired. The warranty and liability will be terminated with opening the device. The same applies to damages caused by external influences. For the device, no servicing is required.

3. Type Code

4. Assembling and Installation

The DC meter can be used as a stand-alone meter without any additional equipment. This ensures a full range of functions with a compact design.

Overvoltage protection

The isolated DC EV (Electric Vehicle) charging station has to reduce overvoltage to the meter , the tested peak impulse voltage of meter is 9.6 kV. The recommended impulse voltage from EV charging station to the meter shall be controlled less than 6KV.

Requirements for the connected charging station controller and the charging station as a whole

The public key and the Server ID of the DCM6-650/-200 have to be attached to the charging station so that it is visible from the outside for each charging point.

Requirements for the transparency software

Transparency software has to be used to display the invoiced data in compliance with the legal requirements, which enables signature verification of the measurement data records for invoice control.

The transparency software is ready for download at:

• https://www.safe-ev.de/de/transparenzsoftware.php

4.1 Housing

The meter is constructed for assembling on DIN-rail TH 35-7.5 according to IEC 60715.

3D printing of DCM6-650 (figure 2)

3D printing of DCM6-200 (figure 3)

Figure 4 constructional drawing

(Dimension in mm)

4.2 Installation and Safety

- The meter and all associated components may only be installed in compliance with all safety regulations. Ignoring these instructions may endanger life and the manufacturer will not take any responsibility.
- It is always mandatory to ensure the maximum peak voltage and maximum peak current of the desired application do not exceed the maximum peak values of the meter. Otherwise the meter gets damages due to over-voltage and or over-current. These peak values are 1000VDC (Max Voltage) and 650 A (Max Current) and 30xImax over-current margin.
- In order to ensure smooth operation of the meter, the manufacturer's seal of approval has to be obtained before installation. If this has expired or is missing, the meter has to be sent back to the manufacturer for a new test.
- The meter should be installed in dry and well-ventilated area. The meter should be installed on a top-hat rail away from flammable or vibrating components. During installation, the meter has to be ensured to operate properly. Possible damage to the meter has to be prevented by protective measures such as enclosures or protective caps.
- The connection has to be made according to Figure 5. The current-carrying lines are connected to the shunt of the meter using M10 nut screws. In order to prevent damage or corrosion due to a bad connection, a tightening torque of 20~25 Nm has to be applied.
- If additional modules are used in conjunction with the meter, a communication link between these

two devices can be established via one of the three RJ12 interfaces.

• After installation of the meter, it is mandatory to change the operating mode from assembling mode to user mode. The manufacturer is not responsible for any damage caused by disregarding this instruction.

Pin-out of the DCM6-650/-200 (figure 5)

Wiring of the DCM6-650/-200 2-wire line loss mode (Figure6)

Negative Type(default)Positive TypeWiring of the DCM6-650/-200 4-wire line loss mode (Figure7)

Item	Description	Notes
Current terminals	M10 screws	Terminals "+" and "- "on the Copper Shunt
Voltage terminals	#1: V+ AWG16-20	
DC Power supply terminals	#9 (+), #10(-): Terminal: WJ237/5.0	9~40V DC
Communication interfaces	RJ12- 1/ terminal 7-8: Communication interface for a charger station controller RJ12-2 : Communication interface for DCM-D	6 1 RS485 Bus(-) 2 power supply input 12V/DC 3 GND 4 not used 5 not used 6 RS485 Bus(+)

Physical Interfaces of the DCM6-650/-200

5. Marking

(Figure 8)

6. Display

The LCD is dot matrix type with the format 37.5 mm \times 17 mm.

Figure 8: Schematic of the Dot Matrix LC Display (unit: mm)

6.1 Internal Display State Machine

The control of the internal display consists of a state machine which changes the current display state according to the present meter data. Figure 9 shows the complete display state machine with all transitions and their corresponding conditions.

6.2 Display Description

6.2.1 General State

In the Display Self-test mode, the meter performs a self-testing on the display to ensure all pixels are fully functional. During this test sequence, the display will shows up all pixels for 3 seconds and turn off all pixels for another 3 seconds.

6.2.2 State Transition Conditions

The startup screen will switch automatically without pressing any button. The regular interfaces need to be triggered by bottons or switch automatically by enabling the wheel-display function. If a fatal error occurs within this self-test state, the display and the entire meter will enter the Meter Fatal Error State.

6.2.3 After Start-up Screen

1) After LCD pixels checking, the meter will enter into initial testing. If any error is detected, the display will shows coresponding error code.

Initial testing ...

Number	Error description	Display
1	Encryption chip error	ER ENI
2	measuring chip error	ER MEC
3	flash error	ER EFC
4	kWh error	ER EEI

2) After initial testing, the LCD will show basic info of the energy meter.

SV1:	71 01.03-6.002
SV2:	01.01
CRC1:	Åe858839
CRC2:	994C834B
SN:	987654321
CX:	0382

1. SV1:71 01.03-6.002^{*1} : Measurement mode code + Firmware version +

	encryption firmware version
2. SV2:01.01	Measuring chip firmware version
3. CRC1:AE858839	MCU firmware CRC
4. CRC2:994C834B	Measuring chip firmware CRC
5. SN:987654321	Series number of the meter
6. CX:0382	Eastron Firmware code

*1: this info contains measurement mode code and firmware version and encryption chip's firmware version. The meter measurement mode can not be set by the user, but only available in assembly mode.

Туре	Measurement mode code	Firmware version	Identification number (checksum)	Measurement mode
	71	01.03	AE858839	(import+ export)
DCM6-650	72	01.03	AE858839	(import only)
	73	01.03	AE858839	(export only)
	31	01.03	2E25D1E9	(import+ export)
DCM6-200	32	01.03	2E25D1E9	(import only)
	33	01.03	2E25D1E9	(export only)

6.2.4 Available Button Actions

Left button Short press :to perform the interface scrolling operation Right button short press: no response Left button long press: to show the basic info of the energy meter & the public key RQ code

Right button Long press :to enter the historical data interface.

to enter into setting in Assembling Mode To enter into logbook in User Mode

6.2.5 Display Charging State

Screen	Description	2-wire system (Line loss function off)	2-wire system (Line loss function on)	4-wire system
Energy	Kwh display	Energy	Energy-M Energy-L	Energy-M Energy-L
D&T	Time display	Date Time	Date Time	Date Time
V&I	Current&Voltag e display	Voltage Current	Voltage Current	Voltage-4 Voltage Current
Power	Power display	Power	Power-M Power-L	Power-M Power-L

Notes:

-M: energy measured by meter

-L:energy loss。

-4:voltage of 4-wire end $_{\circ}$

Whether the loss metering function is enabled or not, the M end is the actual sampling value of the meter. If the actual charging value is needed, it can be obtained by subtracting L from M. If it's charging, the value of energy ,displayed on the "Charging" intetface, is the one from which the loss has been removed .

6.3 Display screen image

6.3.1 Display Charging Summary State

The charging summary status displayed is basically a summary of the charging process that was just executed. All instrument values required for the complete billing process should be displayed to the customer. So for DCM6-650/-200 series, during the charging process, there is only one difference between the normal display interface and the uncharged interface. After charging, the energy interface will not display the total battery level, but will display the current charging information.

6.3.2 Normal display

6.3.3 Charging display

CSID: Serial number of charging Energy: The amount of electricity charged

6.3.4 Historical data display

In User Mode, long press and hold the right button to enter **historical data mode**. Charging history data, up to 99 recent data can be queried Short press the left button to find more charging history log.

> Charging history log CSID:00000002 No:01 2023-07-20T13:22:04 Duration: 00:00:01 Energy: 000.0000kWh

First line: Page number of charging ID and historical data **Second line**: The time when the historical data occurred. **Third line**: Charging duration **Fourth line**: Charging Kwh

Configure historical data:

Config history log No:16 2023-01-01T00:02:22 line lose mode change old: line loss none new: tow line loss

In the electricity history data interface, short press the ENTER button to enter the configuration history data screen.

Configure historical data to query up to 99 entries. **First line**: Configuration data page number **Second line**: The time when the historical data occurred. **Third line**: Change type **Fourth line**: Original mode **Fifth line**: Updated mode

Configuration type:

ltem	configuration type
1	line loss mode change
2	line resistance change
3	operating mode change
4	charging deification change
5	insufficient memory
6	firmware update

6.3.5 Public Key display

In the parameter display interface, long press and hold the NEXT button to enter the public key display interface.

The public key will be displayed in QR code format.

6.3.6 Symbols

Production mode symbol.

Figure below shows the symbol, which indicates the current active meter production mode. This mode is

only available during instrument production. As long as the production mode is active, the symbol remains visible.

Assembling mode symbol.

Figure below the symbol, which indicates a currently active assembling mode of the meter. This mode is only available during assembly of the charging point. The symbol remains visible as long as the assembling mode is active.

Line loss mode

DCM6 has two line loss modes, 4-wire and 2-wire, and the symbol is displayed in the upper left corner of the LCD. If no symbol is displayed, there is no line loss mode. Wire setting can only be set successfully in assembling mode .

symbol	introduction
4	4-wire line loss mode
2	2-wire line loss mode
	No line loss mode

4-wire line loss mode

The 4- wire system means that there are two wires for power supply and two wires for signal. The power supply and the signal work separately.

difference

The four - wire system can sample the voltage value at the gun end in real - time, enabling more accurate calculation of the actual charging power and power loss.

Wiring line loss mode switching

7. USER BUTTONS

No	. Element	Function
1	Right Button	Depending on the press duration, tapping to the previous display item, or controlling the display backlight
2	Left Button	Depending on the press duration, tapping to the next display item, or changing the current display state

Button events of the DCM6-650/-200.

The buttons only control the display sequence. They do not influence the meteorological part of the meter.

8. Communication

8.1 RS485 Interfaces

There are three RS485 interfaces of type RJ12.

• RJ12-1 and 2 used for future communication with SMGW (Smart Meter Gateway) modules.

The two jacks are connected internally and can be used for daisy-chain connection of several meters on a metrological network.

• terminal 7&8 is designed for the communication with the charge station.

8.2 Modbus Protocol

The MODBUS Protocol defines the format for the master's query and the slave's response.

The query contains the device (or broadcast) address, a function code defining the requested action, any data to be sent, and an error-checking field.

The response contains fields confirming the action taken, any data to be returned, and an error-checking field. If an error occurred in receipt of the message then the message is ignored, if the slave is unable to perform the requested action, then it will construct an error message and send it as its response. The MODBUS Protocol functions used by the Eastron Digital meters copy 16 bit register values between master and slaves. However, the data used by the Eastron Digital meter is in 32 bit IEEE 754 floating point format.

Thus each instrument parameter is conceptually held in two adjacent MODBUS Protocol registers. Query The following example illustrates a request for a single floating point parameter i.e. two 16-bit Modbus Protocol Registers.

Eirct Buto

First Byte								Last Byte
Slave Addres s	Function Code	Start Address (Hi)	Start Address (Lo)	Number of Points (Hi)	Number of Points (Lo)	Number of Points (Lo)	Error Check (Lo)	Error Check (Hi)

Slave Address: 8-bit value representing the slave being addressed (1 to 247), 0 is reserved for the broadcast address. The Eastron Digital meters do not support the broadcast address.

Function Code: 8-bit value telling the addressed slave what action is to be performed. (3, 4, 8 or 16 are valid for Eastron Digital meter)

Start Address (Hi): The top (most significant) eight bits of a 16-bit number specifying the start address of the data being requested.

Start Address (Lo): The bottom (least significant) eight bits of a 16-bit number specifying the start address of the data being requested. As registers are used in pairs and start at

zero, then this must be an even number.

Number of Points (Hi): The top (most significant) eight bits of a 16-bit number specifying the number of registers being requested.

Number of Points (Lo): The bottom (least significant) eight bits of a 16-bit number specifying the number of registers being requested. As registers are used in pairs, then this must be an even number.

Error Check (Lo): The bottom (least significant) eight bits of a 16-bit number representing the error check value.

Error Check (Hi): The top (most significant) eight bits of a 16-bit number representing the error check value.

Response

The example illustrates the normal response to a request for a single floating point parameter i.e. two 16-bit Modbus Protocol Registers.

First Byte

First Byte Last Byte								st Byte
Clave	Function	Duto	First	First	Second	Second	Error	Error
Slave Functio	Function	Codo Count	Register	Register	Register	Register	Check	Check
Audress	Code	Count	(Hi)	(Lo)	(Hi)	(Lo)	(Lo)	(Hi)

Slave Address: 8-bit value representing the address of slave that is responding.

Function Code: 8-bit value which, when a copy of the function code in the query, indicates that the slave recognised the query and has responded. (See also Exception Response).

Byte Count: 8-bit value indicating the number of data bytes contained within this response

First Register (Hi)*: The top (most significant) eight bits of a 16-bit number representing the first register requested in the query.

First Register (Lo)*: The bottom (least significant) eight bits of a 16-bit number representing the first register requested in the query.

Second Register (Hi)*: The top (most significant) eight bits of a 16-bit number representing the second register requested in the query.

Second Register (Lo)*: The bottom (least significant) eight bits of a 16-bit number representing the second register requested in the query.

Error Check (Lo): The bottom (least significant) eight bits of a 16-bit number representing the error check value.

Error Check (Hi): The top (most significant) eight bits of a 16-bit number representing the error check value.

The protocol format supported by the electricity meter is modbus, and detailed instructions can be found in the protocol description. The following are the charging and discharging processes:

Start charging: Tx:00 10 17 A2 00 01 02 00 01 14 43 Rx: 01 10 17 A2 00 01 A5 9F End charging: Tx:00 10 17 A2 00 01 02 00 02 54 42 Rx: 01 10 17 A2 00 01 A5 9F Read public key: Tx:00 03 23 00 00 20 4E 47 Rx: 01 03 40 26 49 3C 90 97 D7 11 12 43 5D 19 4C 7E B5 CC 59 74 86 C5 3E 7F 2A CC 53 DD F9 E3 87 B2 63 02 C2 73 FA A4 83 95 46 67 BE B0 7E 64 90 FF AF AD B7 17 E5 13 C1 C0 C1 65 F4 64 CF AA 3A E3 DD

EF 9E C4 D5

Input register

Input registers are used to indicate the present values of the measured and calculated electrical quantities. Each parameter is held in two consecutive16 bit register. The following table details the 3X register address, and the values of the address bytes within the message. A (*) in the column indicates that the parameter is valid for the particular wiring system. Any parameter with a cross(X) will return the value zero. Each parameter is held in the 3X registers. Modbus Protocol function code 04 is used to access all parameters. For example, to request: Amps 1 Start address=0006

Amps 2 No. of registers =0002 Amps 2 Start address=0008 No. of registers=0002

Each request for data must be restricted to 40 parameters or less. Exceeding the 40 parameter limit will cause a Modbus Protocol exception code to be returned.

Input register

Input registers are used to indicate the present values of the measured and calculated electrical quantities. Each parameter is held in two consecutive16 bit register. The following table details the 3X register address, and the values of the address bytes within the message. A (*) in the column indicates that the parameter is valid for the particular wiring system. Any parameter with a cross(X) will return the value zero. Each parameter is held in the 3X registers. Modbus Protocol function code 04 is used to access all parameters.

For example, to request: Ar

Amps 1Start address=0006
No. of registers =0002Amps 2Start address=0008
No. of registers=0002

Each request for data must be restricted to 40 parameters or less. Exceeding the 40 parameter limit will cause a Modbus Protocol exception code to be returned.

Integer register							
310001	Total import active energy .	8	Int64	Wh	27	10	
310005	Total export active energy .	8	Int64	Wh	27	14	
310021	Total active Energy	8	Int64	Wh	27	24	
310251	Volts	4	Int32	0.1V	28	0A	
310257	Current	4	Int32	0.001A	28	10	
310263	power	4	Int32	0.1W	28	16	
310309	Line Loss power	4	Int32	0.1W	28	44	
310311	Positive line loss energy	8	Int64	Wh	28	46	

DCM6 Input Registers

Address (Register)	DCM6-650/-200 Input F	Modbus Protocol Start Address Hex				
	Description	Length (bytes)	Data Format	Units	Hi Byte	Lo Byte
30001	Volts	4	Float	V	00	00
30007	Current	4	Float	А	00	06
30013	Active power	4	Float	W	00	0C
30073	Import active energy	4	Float	kWh	00	48
30075	Export active energy	4	Float	kWh	00	4A
30343	Total active energy	4	Float	kWh	01	56
33329	Meter temperature value	4	Float	°C	0D	00
320005	Positive line loss energy	4	Float	kWh	4E	24
320007	Negative line loss energy	4	Float	kWh	4E	26
320009	Line Loss Power	4	Float	w	4E	28
320011	Line Loss Energy	4	Float	kWh	4E	2A
320013	Charging gun power	4	Float	w	4E	2C
320015	Positive charging gun energy	4	Float	kWh	4E	2E
320017	Negative charging gun energy	4	Float	kWh	4E	30

310315	Negative line loss energy	8	Int64	Wh	28	4a
310319	Line Loss energy	8	Int64	Wh	28	4E
310323	Charging gun power	4	Int32	0.1W	28	52
310325	Positive charging gun energy	8	Int64	Wh	28	54
310329	Negative charging gun energy	8	Int64	Wh	28	58
Floating-poin	t continuous register	1	1	1		
316385	Volts	4	Float	V	40	00
316387	Current	4	Float	А	40	02
316389	Power	4	Float	w	40	04
316391	Line Loss Power	4	Float	w	40	06
316393	Charging gun power	4	Float	w	40	08
316397	Import active energy	4	Float	kWh	40	0C
316399	Export active energy	4	Float	kWH	40	OE
316401	Total active energy	4	Float	kwh	40	10
316403	Positive line loss energy	4	Float	kWh	40	12
316405	Negative line loss energy	4	Float	kWh	40	14
316407	Total line loss energy	4	Float	kWh	40	16
316409	Positive charging gun energy	4	Float	kWh	40	18
316411	Negative charging gun energy	4	Float	kWh	40	1a
316413	Total Charging gun energy	4	Float	kWh	40	1c
Integer conti	nuous register					
320225	Total active Energy	8	Int64	Wh	4F	00
320229	Volts	4	Int32	0.1V	4F	04
320231	Current	4	Int32	0.001A	4F	06
320233	Power	4	Int32	0.1W	4F	08
320235	Total import active energy .	8	Int64	Wh	4F	0A
320239	Total export active energy .	8	Int64	Wh	4F	0E
320245	Line loss power	4	Int32	0.1W	4F	14
320247	Positive line loss energy	8	Int64	Wh	4F	16
320251	Negative line loss energy	8	Int64	Wh	4F	1A
320255	Line loss energy	8	Int64	Wh	4F	1E
320259	Charging gun power	4	Int32	0.1W	4F	22
320261	Positive charging gun energy	8	Int64	Wh	4F	24
320265	Negative charging gun energy	8	Int64	Wh	4F	28
320269	Total Charging gun energy	8	Int64	Wh	4F	2c

Holding Registers

Holding registers are used to store and display instrument configuration settings. All holding registers not listed in the table below should be considered as reserved for manufacturer use and no attempt should be made to modify their values.

The holding register parameters may be viewed or changed using the Modbus Protocol. Each parameter is held in two consecutive 4X registers. Modbus Protocol Function Code 03 is used to read the parameter

and Function Code 16 is used to write. Write to only one parameter per message.

DCM6 Protocol Holding Register Parameters

Address Paramet-e Register		Modbus Protocol Start Address Hex			Mada	
Register		Addre High	ss Hex	valid range	wode	
		Byte	Byte			
				Write any value to password lock protected registers.		
				Read password lock status:		
				0 = locked. 1 = unlocked.		
40015	Password Lock	00	OF	Reading will also reset the	r/w	
			02	password timeout back to one minute.	.,	
				Length : 4 byte		
				Data Format : Float		
				Write the network port parity/stop bits for MODBUS		
				Protocol, where:		
			12	0 = One stop bit and no parity, default.		
				1 = One stop bit and even parity.		
40019	Network Parity Stop	00		2 = One stop bit and odd parity.	r/w	
				3 = Two stop bits and no parity.		
				Requires a restart to become effective.		
				Length : 4 byte		
				Data Format : Float		
				Write the network port node		
				address: 1 to 247 for MODBUS Protocol, default 1.		
40021	Network Node	00	14	Requires a restart to become effective.	r/w	
				Length : 4 byte		
				Data Format : Float		
				Write password for access to protected registers.		
40025	Password	00	18	Length : 4 byte	r/w	
				Data Format : Float		
				Write the network port baud rate for MODBUS		
				Protocol, where:		
				0 = 2400 baud.		
				1 = 4800 baud.	r/w	
40029	Network Baud	00	1C	2 = 9600 baud, default.		
	Kate			3 = 19200 baud.		
				4 = 38400 baud		
				Length : 4 byte		
				Data Format : Float		

	Automatic			Default: 0, Unit: s			
	Scroll	00	3A	Range: 0~255, 0 means no scroll	r hu		
40059	Display Time	00		Length : 4 byte	1700		
				Data Format : Float			
				Default: 60, unit: min			
				Range:0~121			
	Backlight time			0 means the backlight will be always on.			
40061		00	3C	121means the backlight will be always off.	r/w		
				Length : 4byte			
				Data Format : Float			
				0x0002 : Configuration Mode			
				0x0003 : user mode			
	mode						
401521	switching	05	FO	Length : 2byte	r/w		
				Data Format: Hex			
				(KPPA is asked)			
				0000: Do not use line loss mode (default)			
				0001. 2-wire mode			
	Line loss mode	06	00				
401536	of Charging			Available in administrator mode	r/w		
	station			Length : 2byte			
				Data Format Hex			
				Line resistance of Charging station (default 0)			
				0.99 99 milliohms			
	Line resistance of Charging station		01	Evample:			
				$2x^{-1}$			
401537		06		0x0a=0.1 million	r/w		
				Available in administrator mode			
				Available in automistrator mode			
				Data Format : Hox			
	Tatalahawina						
401539	lotal charging	06	02		ro		
	uata			Length : 40yte			
	Search for			Charging ID: 1~300000			
401541	charging data	06	04		r/w		
	by charging ID			Length : 4byte			
				Data Format :Hex			
				Charging history data length			
401543	The length of	06	06	1~1024	ro		
	charging data			Length : 2byte			
				Data Format :Hex			
401545	Retrieved	06	08	Length :1024byte	ro		
	charging data			Data Format :ASCII			
402056	Total log data	08	08	Total number of logs	ro		

	volume			1~6000		
				Length : 4byte		
				Data Format :Hex		
				Log ID		
	Finding data by			1~6000		
402058	log ID	08	0A	Length : 4byte	r/w	
				Data Format :Hex		
				Log data length		
				1~200		
	The length of			Note: Please refer to Appendix 1 for the parsing		
402060	log data to be	08	0C	format	ro	
	obtained			Length : 2byte		
				Data Format :Hex		
	Found charging			Length :200byte		
402062	data	08	OE	Data Format :ASCII	ro	
				Seconds		
46001	Charging	17	70	Length : 4 byte	ro	
	duration			Data Format : HEX		
				total wh		
46003	charging	17	72	Length : 4 byte	ro	
	energy			Data Format : UINT32		
	Start			Length : 4 byte		
46005	Timestamp	17	74	Data Format : Unix	ro	
	Stop			Length : 4 byte		
46007	Timestamp	17	76	Data Format : Unix	ro	
				0: idle		
				1: charge in progress		
				2: the system was powered off during charging		
46050	Charging status	17	A1	session	ro	
				3: the system was reset during charging session		
				Length: 2 bytes		
				Data Format: HEX		
				0x01:Begin measurement (B)		
				0x02:End measurement(E)		
46051	charge control	17	A2	Length : 2 byte	r/w	
				Data Format : HEX		
				0x00:Not initialised		
				0x01:Idle		
				0x02:Signature in progress		
				0x03:Signature OK		
46061	Signature	17	AC	0x04:Invalid date time	ro	
	status			0x05:Invalid measurement		
1				0x06: signature state error		
1				0x07:Keypair generation Error		
				0x08:SHA failed		

				0x09:Public key error	
				0x10:Invalid message format	
				0x11:Invalid message size	
				0x12:Signature error	
				0x13:Undefined error	
				Length 2 hytes	
				Data Format: HEX	
	Signatura			Longth 2 butor	
47425	Signature	1D	00	Dete Formet: UEV	ro
	Length				
47426	Signature (raw)	1D	01	Data Format: HEX	ro
	Output			Length: 2 bytes	
48449	Message	21	00	Data Format: HEX	ro
	Length (JSON)				
	Output			Data Format: HEX	
48450	Message	21	01		ro
	(JSON)				
	Public Key			Data Format: HEX	
48961	(raw)	23	00		ro
	Output			Length: 2 bytes	
49217	Message	24	00	Data Format: HEX	ro
	Length (OCMF)				
	Output			Data Format: HEX	
49218	Message	24	01		ro
	(OCMF)				
				Write the network port parity/stop bits for MODBUS	
				Protocol, where:	
				0 = One stop bit and no parity, default.	
	Network Parity			1 = One stop bit and even parity.	
412307	2	30	12	2 = One stop bit and odd parity.	r/w
				3 = Two stop bits and no parity.	
				Data Format, float (length, 4 byte)	
				Write the network port haud rate for MODBUS	
				Protocol where	
				0 = 3400 hpc	
				0 – 2400 bps	
	Network Baud			1 = 4800 bps.	,
412317	Rate 2	30	10		r/w
				3 = 19200 bps (default) .	
				4 = 38400 baud	
				6 = 115200baud	
				Data Format: float (length: 4 byte)	
				time zone	
461439	Zone	EF	FE	Range: -12~12	r/w
	Zone			Length: 4 bytes	
				Data Format: float	
461441	Time	FO	00	s-min-hour-week-Date-Month-Year-20	r/w

				length	: 8 byte			
				Data Fo	rmat:BCD			
				Dav-ho	Dav-hour-minute			
				day - 2	hvte.			
				bour - 2	1 byte:			
				minuto:	-1 buto			
				Longth	- 1 Dyte			
461445	Dunning time	50	04	Dete Fe	. 4 Dyle			
401445	Running time	FU	04		rmat:BCD		r/w	
				Explain:				
				04 23 2	157 Represe			
				Running	g time=423 da	ays+21 nours+57 minutes		
				Write o	peration, only	y allowed to write 00 00 00 00,		
				represe	nting clear co	ontinuous running time		
				Load ru	nning time. T	he timing is only performed		
	Load running			when th	ne meter dete	ects power.		
463795	time	F9	32	Unit: Ho	our.		r/w	
				Length	: 4 byte			
				Data Fo	rmat : Float			
				Read th	e status code			
				Bit 0	time	0: RTC time not synchronized		
					synchroni	1: RTC time synchronization		
					zation			
				Bit 1	charging	0: not charged		
464507	meter status	50	5.0		state	1: charging	De	
404507	code	гв	FA	Bit	Wire	00: Wireless system	KU	
				2~3	system	01: 2-wire system		
						11: 4-wire system		
				Bit4	work	0: can not		
					normally	1: can		
				Length	: 4 byte			
				Data Fo	rmat : hex			
				Read Fa	ult Code			
				Bit1 EN	CRYPTIONG	IIC FAULT		
				Bit 6 MI	FASURE CHIE	P FAUIT		
				Bit 7 FX	TERN FLASH			
464511	Fault Code	FB	FF	Bit 10 F	FPROM IIC I	FALIIT FEnrom	ro	
			-	000002	: ENCRYPTI	ONG IIC FAUL		
				Length	· 4 hvte			
				Data Fo	rmat : Hex			
				Note: O	nly read			
				Serial n	umber			
464513				Length.	4 byte			
101010	Serial number	FC	00	Data Fo	rmat: unsign	ed int32	ro	
				Note O	inly read			
		1		Note. U	iny icau			

464515	Meter code	FC	02	Meter code 8000 Length : 2 byte Data Format : hex Note: Only read	r
464645	The version number of the LCD display	FC	84	The version number of the LCD display of the electricity meter is XX.YY Data format: The first byte represents XX, and the second byte represents YY Length : 2 byte Data Format : Hex Note: Only read	ro
464649	MUC program CRC verification	FC	88	Program CRC verification Length : 4 byte Data Format : Hex Note: Only read	ro
464651	Metrology program CRC calibration	FC	8A	Program CRC verification Length : 4 byte Data Format : Hex Note: Only read	ro

OCMF Holding Registers

				General status for user assignment
				0x0000: true
40145	IC	10	00	0x0001: false
46145	15	18	00	Length : 2 byte
				Data Format : HEX
				Note: Rewriting the overlay will not clear it
				Detailed statements on user assignment
				BITO:RFID_NONE
				BIT1:RFID_PLAIN
				BIT2:RFID_RELATED
				BIT3:RFID_PSK
				BIT4:OCPP_NONE
				BIT5:OCPP_RS
46147		10	02	BIT6:OCPP_AUTH
40147		10	02	BIT7:OCPP_RS_TLS
				BIT8:OCPP_AUTH_TLS
				BIT9:OCPP_CACHE
				BIT10:OCPP_WHITELIST
				BIT11:OCPP_CERTIFIED
				BIT12:ISO15118_NONE
				BIT13:ISO15118_PNC
				BIT14:PLMN_NONE

				BIT15:PLMN_RING
				BIT16:PLMN_SMS
				Length : 4 byte
				Data Format : HEX
				Note: Up to 4, rewrite overwrite, will not clear
				Type of identification data
				0x0000:NONE
				0x0001:DENIED
				0x0002:UNDEFINED
				0x0003:ISO14443
				0x0004:ISO15693
				0x0005:EMAID
				0x0006:EVCCID
				0x0007:EVCOID
				0x0008:ISO7812
				0x0009:CARD_TXN_NR
46149		18	04	0x000A:CENTRAL
				0x000B:CENTRAL_1
				0x000C:CENTRAL_2
				0x000D:LOCAL
				0x000E:LOCAL_1
				0x000F:LOCAL_2
				0x0010:PHONE_NUMBER
				0x0011:KEY_CODE
				Length : 2 byte
				Data Format : HEX
				Note: Rewriting will overwrite and not clear
				Identification data
				Length : 40 byte
46450		10	05	Data Format : ASCII
46150		18	05	
				Note: It needs to be rewritten before each charging. Not covering
				will display the last charging data.
				Charge-Point-Identification-Type
				0x0000:null
				0X0001:EVSEID
				0X0002:CBIDC
46170	СТ	18	19	
				Available in administrator mode
				Length : 2 byte
				Data Format : HEX
				Note: Rewriting will overwrite and not clear
<u> </u>				Identification data
46171	СІ	18	1a	Length : 10byte
				Available in administrator mode

				Data Format :ASCII
				Note: Rewriting will overwrite and not clear
				TarifText
				Length : 10byte
46177	тт	18	20	Data Format :ASCII
				Note: It needs to be rewritten before each charging. Not covering
				will display the last charging data.

Appendix 1

Events like change in loss mode, changes in line resistance, changes in the operating mode/charging identification, a firmware upgrade and detection of inadequate memory is logged. If the logbook gets full, it will also be noted as the last event in the logbook. The meter then needs to be replaced because the events record can't be recorded.

Byte 0 ~byte 3	Unix time stamp
Byte 4	1: Change the line loss mode
	2: Impedance change
	3: Change of working mode
	4: Change of charging identification point
	5: Insufficient memory
	6: Firmware update
	7: Charging distribution point change
Byte 5	Current time zone
Byte 6~Byte 7	Current line resistance
Byte8	Charging identification point now
Byte9 ~ byte 18	Charging distribution point now
Byte 19 ~byte 34	Raw data
Byte 35 ~ byte 98	Signed data

8.3 Private / Public key read

This is one-time procedure made at production of energy meter. Generation of key pair is HW based with dedicated crypto chip. Private key is stored internally within the crypto chip and there is no way of reading it.

Public key is available to end user for verification of digital signature. Therefore, public key is readable through MODBUS communication. Public key is stored in 64 bytes raw format at MODBUS address 48961.

For Transparent Software check, public key header should be added with the following data: 3059301306072A8648CE3D020106082A8648CE3D03010703420004 For checking with ECDSA, public key header is: 04.

8.4 OCMF Dataset

The meter readings that are written to the OCMF load log are similar to the values displayed on the meter display. They depend on the configuration settings.

Note: All Energy Values of the following chapters are parsed into the OCMF file with 3 decimal counts. Internally the DCM6-650/-200 calculates all of these values with 4 decimal counts. Therefore the last decimal count of the parsed value can deviate from the calculated value.

List of all OCMF Start Reading.

```
OCMF|
{
"FV":"1.0",
"GI":"00000000",
"GS":"0",
"PG":"T8",
"MV":"EASTRON",
"MM":"SDM630",
"MS":"00000000",
"MF":"01.01",
"IS":false,
"IF":[],
"IT":"NONE",
"ID":"",
"CT":"",
"CI":"".
"RD":
[
{
"TM":"2023-01-01T00:00:10,000+0800 S",
"TX":"B",
"RV":0.000,
"RI":"1-b:1.8.0",
"RU":"kWh",
"RT":"DC",
"EF":"",
"ST":"G"
}
{
"TM":"2023-01-01T00:00:12,000+0800 S",
"TX":"E","RV":0.000,
"RI":"1-b:1.8.0",
"RU":"kWh",
"RT":"DC",
"EF":"",
"ST":"G"
}
]
}
ł
"SA":"ECDSA-secp256r1-SHA256"
,
```

"SD":"3046022100bb1e83b32a0792dbaa8db595d8743f6db4288771dd6096177db4a62a94575aaf022100a 429e6cd787060844ed3ab6c1ec718b7890e25f150fee5ecdcd8ef6d57419479"

9. System Architecture

9.1 System Overview

The meter consists of two independent components: A metering part and an application part. Both parts communicate via a non-reactive serial interface.

Simplified block diagram of the DCM6-650/-200

9.2 Measurement

The voltage sampling is implemented by a resistor divider network. Current sampling is implemented by a manganin shunt. The DC voltage is filtered by a RC-network. The metering chip integrates the voltage and current measurement in a SoC, to obtain power and other instantaneous value. Power and energy values are computed and stored inside the metering part.

9.3 Application

The application part is designed to control the local user interface – the buttons and the DOT Matrix Display – as well as the two serial communication interfaces. The RTC is integrated in the application part, the storage of charge process data and logbook is controlled by the application controller.

9.4 LCD

The meter has one pulse LED for active import mains energy with 1000 Imp/kWh. In idle state (no load) the LED is off.

The LED is controlled by the metering part.

10. Functional Description

10.1 About Line Loss

The DCM6-650/-200 can calculate the line loss energy. For that reason, the impedance (Rline) has to be configured. The impedance can only be changed in assembling mode. A change of the impedance is recorded in the logbook. The line loss power and its resulting energy are calculated by the metering controller. The line loss energy is counted in the line loss registers. If the impedance is set to 0, the line loss measurement is deactivated, the corresponding status flag is cleared, and the display symbol is switched off.

DCM6-650/-200 Wiring Illustration

As shown in Figure above the overall line loss impedance is a result of the impedance of the wire between the positive terminal of the Mains supply and the device itself Rline1 and of the impedance of the wire between the second terminal of the device to the positive terminal of the meters shunt Rline2. Therefore the overall line loss impedance can be calculated as sum of both wire impedance.

The calculation is described with the following:

Line Loss Impedance = RlineLoss = Rline1 + R line2

Remark: In this document the line loss impedance is mentioned several times. This refers to the overall line loss impedance. The same applies for the configurable line loss impedance.

In the two-wire line loss measurement mode, the line loss energy is calculated as:

Line Loss power = plineLoss(t) = $I_{shunt}(t) \cdot Rline$

Line Loss Energy = $\int_{0}^{t} P_{\text{lineLoss}}$ (t) dt

Note: The Value for Ishunt refreshes with a maximal period of 1500ms. The same value is applied for the integration constant for the line loss energy. The energy integration cycle is synchronized with the line loss power cycle.

Import

For Import Energy Mode the register values for every point in time are given by: Total Import Mains Energy = Total Import Device Energy + Total Import Line Loss Energy , with Rline = (Rline1 + Rline2) > 0, which is illustrated inFigure 28. The exact calculation is given by: Total Import Mains Power = PImportMains(t) = Ishunt(t) · uterminal(t) Total Import Device Power = PImportDevice(t) = PImportMains(t) - PlineLoss(t) Total Import Mains Energy = \int_0^t PImportMains(t) dt. Total Import Device Energy = \int_0^t PImportDevice(t) dt. As prior mentioned the refreshment cycle of the base values for the respective power calculation and integration cycle of the resulting energy are synchronized.

11. EASTRON EV-METER DC TEST

11.1 Introduction:

"EASTRON EV-METER DC TEST" is a software that simulates the operation of charging piles. The software can perform charge and discharge, signature verification and historical data reading functions. And with a debugging interface, you can view the communication data, which helps customers quickly develop management software.

ER DC TEST								_		×
Com Port Baudrate Data bits	19200	Refrest	Parity Stop bit Disconnected	None 1 Connec	> > t	Commun	ication			
Meter SN: Command:						Tes Send	Clear)		
	Com Port Baudrate Data bits Meter SN: Command:	ER DC TEST	ER DC TEST	ER DC TEST	ER DC TEST Com Port Refresh Parity None Baudrate 19200 Stop bit 1 Data bits 8 Disconnected Connected Meter SN: Command:	ER DC TEST	ER DC TEST	ER DC TEST	ER DC TEST -	ER DC TEST

- 1. Communication port link and communication test.
- 2. Meter settings.
- 3. Parameter measurement.
- 4. Simulate charging.
- 5. History parameter reading

11.2 Preparation:

- 1. Eastron DC meters DCM6 series.
- 2. USB to 485 converter, connect computer and meter.
- 3. A computer.

11.3 Operating environment:

- 1) The computer must support the .NET Framework 3.8
- 2) The minimum system version supports Windows 7 Service Pack 1

11.4 Operation

11.4.1 Communication connection

Screen :

EASTRON EV-MET	TER DC TEST	_	×
Help •			
Communication	1 Com Port ~ 4 Refresh 5 Parity None 2 Baudrate 19200 ~ 6Stop bit 1 3 Data bits 8 ~ 7Disconnected Connect		
Q [©] 1	9 Meter SN: 0 Command: 12 Send 13 Clear		
Settings	11		
Charge			

- 1. Communication port
- 2. Baud rate
- 3. Data bits
- 4. Refresh
- 5. Parity
- 6. Stop bit
- 7. Connection
- 8. Communication test button
- 9. SN: when connect successfully, SN will pop up
- 10. Command: column for command editing.
- 11. Data screen
- 12. Send command
- 13. Clear the data screen

Choose right communication parameter. (default: 19200, 8, none, 1), click the button "Connect". when the SN pop up, it means the connection succeed.

\bigcirc	Com Port	COM42	2	Refresh	Parity	None	2				
\mathbf{O}	Baudrate	19200	~		Stop bit	1	14				
mmunication	Data bits	8	×	3	Connected	Disconn	lect	Communic	ation		

11.4.2 Parameter Settings

ASTRON EV-MEL	TER DC TEST						—	
p -								
	USER MODE							
	COM1.Network Parity Stop	One stop bit a	nd no pa $ imes $	Read) Se	et 1		1
mmunication	COM2.Network Parity Stop	One stop bit a	nd no pa 🗸	Read	Se	et 2		
	Network Node	1	Read	Set	3			
0	COM1.Network Baud Rate	19200 ~	Read	Set	4			
0	COM2.Network Baud Rate	19200 ~	Read	Set	5			
Settings	Backlight Time	60 ≑	Read	Set	6			
	Time Zone	0	Read	Set]7			
	Time 2024-06-11 19:4	41:21	Read	Set	No	w 8		1
	Pass		SetAssem	nbling Mode] 9			
	Pass ASSEMBLING MODE		SetAssem	nbling Mode) 9			
asurement	Pass ASSEMBLING MODE Pass 1000		Set Assem	nbling Mode) 9] 10	U]
	Pass ASSEMBLING MODE Pass 1000 Charge Point Identification	CT NULL	Set Assem	nbling Mode) 9] 10 _ 11	Read	Set	
	Pass ASSEMBLING MODE Pass 1000 Charge Point Identification Line Loss Mode	CT NULL Do not use line I	Set Assem Set Use V CI	abling Mode er Mode Read) 9] 10] 11 	0 	Set	
usurement	Pass ASSEMBLING MODE Pass 1000 Charge Point Identification Line Loss Mode Internal Resistance(mΩ)	CT NULL Do not use line I 0.00	Set Assem	nbling Mode er Mode Read Read	9 10 11 Set Set	0 	Set)
isurement Charge	Pass ASSEMBLING MODE Pass 1000 Charge Point Identification Line Loss Mode Internal Resistance(mΩ) Current direction	CT NULL Do not use line I 0.00 Forward	Set Assem Set Use CI oss m ~	nbling Mode er Mode Read Read Read	9 10 11 Set Set	Read 12 13 14	Set	
surement	Pass ASSEMBLING MODE Pass 1000 Charge Point Identification Line Loss Mode Internal Resistance(mΩ) Current direction Connect mode	CT NULL Do not use line I 0.00 Forward N mode default	Set Assem	nbling Mode er Mode Read Read Read Read	9 10 11 Set Set Set Set	Read 12 13 14 15	Set)

- 1. Com 1 network parity stop
- 2. Com 2 network parity stop
- 3. Network Node: Modbus address
- 4. Com 1 baudrate
- 5. Com 2 baudrate
- 6. Backlight time
- 7. Time Zone
- 8. Time

- 9. Set Assembling Mode: change the meter into Assembly Mode by enter the password.
- 10. Set User Mode: change the meter into user mode by enter the password.
- 11. Set CT, CI
- 12. Format version: to read OCMF version
- 13. Line loss mode
- 14. Internal Resistance: Line loss value setting
- 15. Connect mode
- 16. Cable name

When using the meter for the first time, you need to make sure that the meter mode is in configuration mode or User Mode. It can be distinguished by the display interface of the meter.

When the wrench symbol expears in the upper right corner of the LCD, it means that it is in

configuration mode. The meter can do some assembly mode settings.

Switch from assembly mode to User Mode with the ability to enter a password to switch. The default password is 1000

ASSE	MBLING MODE	
Pass	1000	Set User Mode
Time s	setting	
Time	2023-07-11 11:13:00 Read	Set Now

Note:

Charging and discharging is only working when it is in user mode, and the time needs to be reset for each power-up to function properly.

11.4.3 Measurement

		Measurement	Value		
9	•	Voltage(V)	0		
ication		Current(A)	15.13		
		Power(W)	0		
		Line Loss Power (W)	0		
		Line Loss Energy(kWh)	0		
		Total Active energy(kWh)	0		
ment				 Refresh M	ascuramente

When the meter is connected to the load, we can already read the measurement data through the meter, click the Refresh Measurements button, and refresh the measurement parameters.

11.4.4 Charge

- 1. OCMF display.
- 2. IS settings.
- 3. IF settings.
- 4. TT settings
- 5. IT, ID settings.

- 6. Start charging.
- 7. End charging.
- 8. Charging status display.
- 9. Verify OCMF data
- 10. Export public key address selection.
- 11. Export signature data address selection.
- 12. Export public key data.
- 13. Export signature data.
- 14. Public key display window.
- 15. show the public key button

Set IT, ID parameters (optional)

Tap the Start Charging button. At this point, the meter will start charging. If you can't start charging, check that the time setting is complete.

Click the End Charging button, at which point the meter will end charging.

Click Verify to verify the OCMF data (optional), and if the data passes, Verify Success is displayed.

Help -OCMF IT NONE OCMFI{"FV":"1.0","GI":"DCM6-650 0 DOMF[FYF*10*] G**CPCDE46-50 (G\$**C92602382; FG**T2**TW**DCM6*_TMM**650*; MS**022602282; MF**01.01*; TS false, FF*], IT**NONE; "ID***CF***CF**T***RF*U[CTM**2023-07-11712.34:49,00 >66000 \$**TX**F1 * R**0.0000; R**1->18.0**RU**KM**; R**1**CC**EF****ST**G7], [TM**2023-07-11712.34:50,000+0800 \$**TX**E**RV*0000; R**1->18.0**RU**KM**; R**1**CC**EF****ST**G7], [TM**2023-07-11712.34:50,000+0800 \$**TX**E**RV*0000; R**1-\$**TX**E**RV*0000; R**1-\$**TX**E** ID Communication Start Charging Qa Stop Charging 73778f200769b6"3 Settings 1 Verify with publickey Verify Success Measurement Choose path E:\S Export publickey 位机 确定 -Choose path E:\SVN_DATA\上位机软件\DCM650上位机\ Export signature Charge Public 3059301306072A8648CE3D020106082A8648CE3D03010703420004D2516589548D 89D542451C8DAE49E3CDE321C513CEF6DD5EBE073A93AFC31218884D97EE05F D439BF73E6E62A0A87FFEB2F5B46BBA81E6308884FC24C4EB675 Show Publickey E History

OCMF data and public key are also displayed

11.5 History

DEASTRON EV-MET	ER DC TEST –	-	×
Help -			
	1 Charging History Query Log Query		
	Query Mode Recent Records Query V Query Stop 3 4 5		
Communication		1	-
ø	6		
Settings			
Measurement			
Charge			
E_C			
History			

- 1. Read historical charging data labels.
- 2. Read historical configuration data labels.
- 3. Choose between reading all and reading a single ID.
- 4. Query
- 5. Stop
- 6. Data display window

Click the query button to query the historical charging data.

If you have any question, please feel free to contact our sales team.

EASTRON ELECTRONIC CO., LTD.

No. 52, Dongjin Road, Nanhu, Jiaxing, Zhejiang, China Tel: +86-573-83698881 Fax: +86-573-83698883 Email: Sales@eastrongroup.com www.eastrongroup.com